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Abstract

In this study, we examine the behavior of a two-level atom confined within a single-mode optical cavity that is exposed
to laser field radiation. Our analysis encompasses the consideration of the spontaneous emission of the two-level atom and its
interaction with the cavity. The behavior of this system is explored through the application of Schrédinger’s equation. The
solutions to the equations describing the atom-cavity system have been calculated for both the general case and the weak
driving limit. Comparative analysis of the numerical solutions with those obtained in the weak driving limit reveals a notable
agreement.
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1. Introduction

A comprehensive analysis of a two-level atom confined within an optical cavity was conducted in [1].
This analysis utilized the master equation to describe the system’s behavior, with solutions derived for both
the general case and the weak driving limit. Subsequently, the numerical solution of the master equation
was compared with results obtained under the weak driving limit.

In this work, we approach the model from the perspective of Schrédinger’s equation. We provide solutions
in both their full and approximate forms. Lastly, we compare our findings with those reported in [1].

2. Numerical solution

Within a single-mode optical cavity, a two-level atom is confined, and the cavity subjected to stimulation
by a laser field. In this scenario, we describe the behavior of this system using the master equation as detailed
in [1]:

p = —i[H, pl + k(2apa’ —a’ap—pa'a) +y(20_po; — 0 0 p—poio_), (2.1)

here, a and a' illustrate the cavity field’s annihilation and creation operators, while o_ and o, denote
the atomic lowering and raising operators. Additionally, k signifies the decay rate of the cavity field, and y
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stands for the amplitude of the spontaneous emission rate. Now, let’s proceed to define the Hamiltonian of
this system in the interaction picture:

H:6AP0‘+0-7+6CP(1-|'(1+9((1T07+a()-+)+EClT+E*(1, (2.2)

where 0op = wa — wp signifies the detuning between the atomic resonance and the probe laser, while
dcp = we — wp indicates the detuning between the cavity field and the probe laser. Additionally, we have
the atom-cavity coupling constant denoted as g, and E, which is proportionate to the amplitude of the
coherent-state probe laser at the optical frequency wp. Rather than using the master equation, we can
describe this system using the following Hamiltonian [2, 3, 4]:

Heer = (6ap —1iy)or o + (Ocp —iK)aTa—i- g(aTo_ 4+ a0y )+ Eal + E*a, (2.3)

in order to solve this formula, the Schrédinger equation can be utilized. To proceed, we write the wave
function of the atom-cavity system as [5]:

|1|)> = Z Cng|n9> + Cne|ne>a (2.4)

n=0

where afan) = nn), |g), and |e) show the ground and excited levels of the atom, respectively. The
parameters cng and cpe indicate the expansion coefficients. We employ Schrodinger’s equation, denoted
as Herelh) = 1)), and by equating the corresponding coefficients on both sides, we arrive at the following
result:

¢ng = —(i0cp + K)neng — iEvNen_1g — iE*VN+ leny1g — igvNnen_1e, (2.5)
¢ne = —igVn+lenyig — (0ap + v+ (i8cp + kK)N)ene — iEvNen—1e — 1B VN + len e, (2.6)

furthermore, considering the wave function’s normalization condition, we obtain the following equality:

00
Z |Cng|2 + |Cne|2 = 17 (27)
n=0

in order to illustrate these equations in a real form, one can establish the following relationships:

Cng = Xn +1Yn, (2.8)
Cne = Wn +1zn, (2.9)
E = [E| eie’ (2.10)

after substituting these relationships into equations (2.5) through (2.7), we obtain:
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Xn = ScpNyn — kNxp + |E[ cosOyvnyn_1 + [E| sindvn + 1x, 1 +[E[ cosOvn + 1lyni1—

[E| sin@vn + 1xny1 + gvnzn_1, (2.11)
Un = —dcpNxXn — kNYy — [E[ cosOvMxn_1 + |E| sin@v/nyn_1 — [E[ cosOvn + 1xp 11—
[E| sin@vn + 1ynyi1 — gvnwn 1, (2.12)
Wi = gVNn+ 1yns1 + (8ap + 0cpn)zn — (Y + kn)wy + [E| cosOvnzn 1+
|E| sin®y/nwn_1 + [E[cosOvn + 1zn41 — [E| sin@vn + 1wn 41, (2.13)
Zn = —gVN+Ixn i1 — (Sap +dcpn)wn — (Y + kn)zn — |E| cos@y/nwy, 1+
|E| sinfy/nzn_1 — [E|cos®vn + 1w 1 — [E[sin®vn + 1z 41, (2.14)
00
Y X Ayh+wh+zh =1, (2.15)
n=0

now, let’s address these equations in the steady-state. To numerically solve them, we truncate the
equations at a chosen value, denoted as N, and disregard the remaining equations. The choice of N should
ensure that the solutions do not significantly change for N —1 or N 4 1. This simplifies the equations into the
form AV = B, where A and B denote known matrices. By determining the V matrix, we resolve the problem,
enabling us to calculate the desired physical quantities. Specifically, we aim to determine the behavior of the
second-order correlation function at zero-time delay, which can be calculated using the following equation:

242
g (0) = 124 (2.16)
(afa)
where:
(afa) = ) nlq +yh+wh +2z2), (2.17)
n=0
(a?a2) = ¥ 2 —n) (2 +u2 + W +22), (2.18)

0

3
I

figure 1 displays the coherence function curve plotted with the following parameters: g = 27 x 34 MHz,
kK =21 x 4.1 MHz, v = 27t x 2.6 MHz, |E| = 0.01k, and 6 = 0 as functions of dcp. Additionally, this curve
assumes that 0aop = dcp. When we extend this analysis to different values of 8, we observe that the curve’s
behavior remains consistent and aligns precisely with the blue dashed line. For the numerical solution, we
employ N = 50 in the simulations. In the following section, we tackle these equations within the context of
weak driving, ultimately deriving the explicit form of the second-order coherence function.

3. Explicit solution

In this section, we aim to compute the equations derived in the preceding section while considering the
weak driving limit, where |E| < k. Under these conditions, we indicate the order of the unknowns concerning
|E| as follows:

Xn“’o(nL Un*o(n), WnNO(n—i_l)’ ZnNO(n—i_l)) (31)
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Figure 1: This figure illustrates the second-order coherence function curves for specified values versus probe laser detuning from
the atomic resonance. The dashed curve corresponds to equation (2.16), while the solid curve corresponds to equation (3.18).

upon simplifying equations (2.11) through (2.15) to the second order of |E|, while retaining the dominant

terms in each equation, we arrive at the following results:

X9 =0,

Yo =0,

Wo = gy1 +dapzo — YWo,
Zp = —gx1 — dAPWo — YZo,

X1 = dcpy1 — kx1 + |ElcosByp + |E| sinOx + gzo,

Y1 = —dcpx1 — Ky — |E| cosOxqg + |E| sinByg — gwo,

W1 = gV2ys + (8ap + dcp)z1 — (Y + K)wi 4 |E| cosOzg + [E| sinbwy,
21 =—gV2xs — (8ap + 8cp)wi — (v + K)z1 — [E| cosBwg + [E| sinbz,
Xo = 28cpya — 2kxa + [E| cosOV2y; + [E| sin0v2x; + gv/2z1,

Yo = —28cpxe — 2ky2 — |E| cosOV2x; + |E| sineﬂyl — g\/ﬁwl,

X3 +yo =1,

when these equations are solved in the steady-state, we can derive the following relationships:
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here, we specify R = k+1dcp and ¥ =y +18ap, and we use aj° as defined in equation (3.6) from [1].
Assuming cog = 1, which corresponds to xg = 1 and yg = 0, we find that the solutions in equations (3.13)
to (3.16) coincide with those given in equation (3.6) from [1]. The difference arises because [1] initially
considers cgpg = 1, but in a general case, we can consider cog as a complex quantity in the form of et
where ¢ is an arbitrary phase constant. Importantly, this phase constant has no impact on the ultimate
physical solution of the problem. Now, let’s proceed to calculate the second-order coherence function up to
the dominant order as follows:

203 +y3)  2leagl  2la$*? 2]a$cP

(2)
g'?)(0) ~ = = = ,
(X% +y%)2 |Clg|4 \afs 4 |C0g|2 ‘afs 4

(3.17)

this corresponds precisely to the expression in equation (3.8) from [1]. The final equation is included
due to the condition |C09|2 = 1. Upon completing the calculations, the results are as follows:

$18 $18
g®(0) = 202 123)54 = Sési, (3.18)
where the variables are outlined as:
s1=84p0ep +0ApK’ —20ardcrg” + 0EpY? + gt + 2¢% vk + ¥ K2, (3.19)
S = 0hp + 285 pOcp + 0ApSap + 204 pg° + 204 Y2 + 204 pYK + 04 pK: +20apScpg? + 20 ApScpY it
5%py? + gt —29%y? — 2g% vk + vt 4 2y3Kk + vk, (3.20)
s3 = 04p +7% (3.21)
s4.=83p0ep + 0ApK’ +20ap8Lp —20aP8cPg” +28aAp0cpK” +8p —208pg” + 0EpY? 4 28 py Kt
202 pk% + g* +29%yk +2¢%K? +v*K? 4 2yKk3 + k4, (3.22)

now, in figure 1, we can depict the curve corresponding to equation (3.18), derived under the weak field
limit, illustrated as a solid pink line for given values in terms of dcp. The figure vividly demonstrates
a remarkable agreement between the numerically generated results and the predictions within the weak
driving limit. It’s worth noting that this figure bears a striking resemblance to figure 3.1 featured in [1],
which validates the accuracy of our calculations.

Conclusions

This work investigates the behavior of a two-level atom confined in a single-mode optical cavity in the
steady-state. We have calculated the Schrodinger equation for this system in both the general case and
the weak driving limit. The curves plotted based on these calculations demonstrate a consistent agreement
between the two methods. Regardless of whether we employ Schrédinger’s equation or the master equation
to describe the atom-cavity system’s behavior, the outcomes remain consistent. Furthermore, these results
remain unaffected by the 0 phase of the probe laser.
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